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Singularities of viscous flow 

Part II: Applications to slender body theory 
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S U M M A R Y  
The force and torque on a slender body in Stokes flow is obtained by using a distribution of singularities along the 
centreline and the required image system to satisfy the no-slip condition and the plane boundary. It is found that the 
force on a slender body increases rapidly as it approaches within a body length of the boundary, but not the torque. 
To rule out "wall effects", experiments on slender bodies, such as flagellated or ciliated micro-organisms, should be 
carried out a distance of many body lengths (not radii !) from all boundaries. The ratio of normal to tangential resistance 
coefficients is found to be greater than 2 (the maximum in an infinite fluid) in the presence of walls. 

1. Introduction 

In the companion paper (Part I) to this, the fundamental singularities of viscous flow and their 
image system in the presence of a no-slip boundary are discussed. In this paper, applications 
of these singularities in the form of calculating the drag or torque of a slender body in the 
presence of a stationary boundary are obtained. 

For smooth rigid slender bodies, the distribution of viscous fluid singularities ("stokeslets") 
along the centreline has produced relatively accurate calculations for both the force distribution 
and the drag (Burgers [3]; Tuck [15], [16]; Tillett [14] ; Batchelor [1]; Cox [7]) although 
the usual end condition difficulties of slender body theory arise. For twisted or helical rigid 
slender bodies inaccuracies in the strength of the centreline distribution of singularities and 
the drag have been found (Clarke [6], Chwang and Wu [5]) and either a surface distribution 
or an improved coordinate system is needed to improve the accuracy. Hancock [10] used a 
centreline distribution of stokeslets and source-doublets along a flexible cylinder to represent 
the movement of flagellated micro-organisms. Very few attempts have been made to model 
flexible or curved slender bodies with the ~xception of Hancock [10] and Cox [7]. 

Biological fluid mechanics encourages us to re-evaluate the previous studies, and even 
initiate new ones; this being particularly,so in the case of the mechanics of micro-organism 
propulsion. Many flagellated bacteria propel themselves by propagation of helical waves along 
their tails, which induces a torque on both the head (if-it has one) and the tail, hence inducing 
a rotational movement of the bacterium relative to the fluid at infinity (or the laboratory 
frame). This is brought about by the necessity to balance both the linear and angular momentum. 
Because of this simple fact, Chwang and Wu [4] supplemented the usual "stokeslets" distribu- 
tion (corresponding to force) along the centreline with a "rotlet": (corresponding to a torque) 
distribution. In this paper, we will discuss the torque induced on a rotating slender body in both 
an infinite (w and semi-infinite viscous fluid (w We should also poin t out that the propagation 
of helical waves along a flagellum poses other problems which can be labelled the "neigh- 
bouring" and "end" effects. The "neighbouring" effect is concerned with the influence of nearby 
sections of a slender body when we have some "coiling up" of the body and also the effect 
of the relative motion of one section to another (i.e. they are moving at different velocities). 
"End effects" are considered with the influence of differing end shapes on both "stokeslets" 
and "rotlet" singularity distributions. Both of these effects will not be discussed in any detail 
in this paper. 
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Another problem which arises in the study of micro-organism propulsion is with regard to 
the influence of walls or bounding surfaces, such as a slide or coverslip, may have on their 
observed motion: "Are the observed planar beating patterns of many protozoa an artifact 
induced by the influence of either slide or coverslip?" This is a question we cannot answer with 
any degree of certainty at present, but the present study (w 5) does investigate the effects of a 
wall on both a rotating and translating rigid slender body. The experimental study of Winet 
[17] on the wall effect on ciliated micro-organisms will undoubtedly be of considerable interest 
to the theoretician. This study will also be helpful in understanding the complex movements 
of cilia on many protozoa. Cilia, like flagella, are long slender organelles, but in this case a 
very'large number of them (104 -6) are attached to the outer surface of a much larger organism 
(cilia O (10 #m), organism e.g. Opalina 300/~m, Paramecium 250 #m). 

In the next section, we will discuss some basic fundamentals which have been used to date 
in calculating the force distribution and the velocity of propulsion of both flagellated and 
ciliated micro-organisms and indicate the improvements we feel are necessary. This has been 
called the "Gray and Hancock theory" after the paper by Gray and Hancock [9], inspired 
by the original Hancock [10] paper. 

2. Gray and Hancock theory 

Gray and Hancock's [9] paper used the concept of Taylor's [13] coefficients of resistance for 
an infinite cylinder in a viscous fluid. That is, for a flexible body it was supposed that each 
section of the elongated body exerted the same force as an infinite cylinder moving with the 
same velocity, direction and waveform. At low Reynolds number the force exerted on each 
element of the cylinder is proportional to the local velocity. The movement of each portion 
of the cylinder can be described in terms of two components of velocity, one normal (VN) to 
the cylinder and the other tangential (Vr) to it. The coefficients of resistance C N and C r are 
defined as the dimensional constant which give the relationship between both the normal 
6F N and tangential 6F r force elements and V N and Vr respectively on an element of cylinder 
6s in length. Thus, 

5FN = CN VNfs ,  (SFT = CT VTbS. (1) 

Gray and Hancock [9] obtained the following relationship between the normal and tangential 
coefficients of resistance, 

2~z# 
CN = 2CT, CT -- log(22/ro)_ �89 , (2) 

where kt is the viscosity, 2 is the wavelength and r o is the radius of the flexible cylinder. 
If we represent the centreline of a slender body in an infinite fluid in cartesian coordinates 

by ~ (s, t) where s is the arc length along the slender body and t is time then, 

VT = (v "t), V~ = (v.n),  

where 

04 
v -  0t u ,  (3) 

t is the tangent, n the normal to the slender body while U is the velocity of the organism relative 
to the fluid at infinity. Similarly, we can express JF  in terms of both 6FT and 6F N as, 

~F = 6Frt  + ~FNn = Cr((v " t)t + 2(v " n)n)~s (4) 

Now t=a~/Os and I = n n + b b + t t ( v .  b--0) is the idemfactor so we can write (4) as 

(~Fi = CT 26ij t~S ~S J Vjt~S (5) 
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This is exactly the expression for the force distribution along a slender body obtained by Cox 
[7] in his rigorous matched asymptotic expansion approach. The force exerted over the whole 
elongated body can be obtained by integration. 

3. Torque on a slender body: inf'mite viscous fluid 

In cartesian coordinates, the velocity field due to a rotlet of strength M is represented by the 
following equation 

M A X  
u - 8zqzlxl3 , p---const. (6) 

If we consider a distribution Mo (s) of singularities along the centreline of an axisymmetric 
slender body of radius ro(x~) , ]xll ~< l which is rotating with an angular velocity co then the 
integral equation to be satisfied in cylindrical coordinates is the following: 

1 [' Mo(s)ro(x,)ds 
e)r~ = 8~p~. _, ((x I --s) 2 ~-r2(x1)) k" (7) 

This equation has been solved exactly by Chwang and Wu [5] for a class of axisymmetric 
bodies ranging from a sphere to a very slender body. Here, though, we will only discuss the 
limiting case of their results for a very slender body. Following the philosophy of Batchelor [1], 
we will assume that M o (x~) is approximately constant along most of the slender body, except 
possibly the ends. Thus 

CO M~ fl ds 
- ,  (S) 

This first approximation to the torque strength Mo(xl) yields, 

M0 (x l) = 4~z#or 2 (x 1). (9) 

Actually, we can derive (9) more rigorously than the above method if we integrate (7) by parts, 
obtaining 

[ -Mo(S)(Xl-S ) 7 l 1 f t M'o(S)(Xl-S ) 
8zqw) = r2((x,_s)2 +roZ)~ j -, + r~ ~ -, ( (x , - s )2-r2)  �89 ds. (10) 

Now we may approximate the kernel part of the integral in (10) by sgn (x 1 - s), so we obtain the 
following on assuming symmetry in M(s)(i?e. M ( / ) = M ( - / ) )  

8 zq~cn 2M~ (xl) M~ [ ! - x i  l+xl  ] 
~ r ~  + r~ L((l-x~)2+ro~) ~ + ((l+x,)2+r~) ~ - 2 . (11) 

In the middle section of the slender body, the coefficient of M(1) is approximately zero, so we 
reproduce (9) for the strength of Mo(xx) while at the ends 

M o (l) ~ 8rc#o~r 2 (12) 

which is exactly twice the strength in the middle section. 
The result quoted in (9) agrees with that obtained by Lamb [11] for the torque/unit length 

of an infinitely long cylinder. Because many flagellated micro-organisms both translate and 
rotate, it was found to be necessary to supplement the force coefficients defined in (2) with the 
torque coefficient CM, defined as 

CM = 4~#r2o , 5T = CMCObS (13) 

for us to balance both linear and angular momentum. 

4. Force on a translating slender body: semi-inf'mite fluid 

Considerable attention has been given in recent years to the calculation of the force distribution 
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along a slender body in an infinite viscous fluid (Batchelor [1] ; Tillett [14] ; Cox [7] ; Clarke 
[6]). In this section we will consider the influence of a stationary no-slip boundary on this 
force distribution along the centreline of a slender body of length 21 and radius ro(xl) where 
[Xa[< I which is situated a distance h above the no-slip boundary x 3 = 0 (see Fig. 1). We will 
suppose the distribution is parallel to the xl-axis. A similar method to this has recently been 
used by de Mestre [8], when he uses Lorentz's [12] image reflection technique, but here we 
start immediately with the correct Green's function. 

X 3 

C 
X I = - ~  

u 
to, x,, 

Xl= +~ 

No- slip wall 
X 3 = 0  

. .  X! 

Figure 1. Illustrates the geometry of the slender body relative to the cartesian coordinate system fixed in the wall. 

The singularity of most importance at low Reynolds number is the stokeslet distribution, 
since it is the fundamental singularities of stokes flow. For a slender body the distribution 
strength of all the other singularities is at most 0 (r 0 F), which in the ordering of this problem 
proves to be a lower order of magnitude approximation. This is apparent if we go from the 
unique and exact surface distribution of stokeslets by Taylor series to a line distribution of 
many singularities. If we considered a source-doublet distribution, by extension of the result 
for a sphere obtained by Stokes, this would have an order of magnitude of O (r 2 F). Thus all the 
essential features of this problem for a slender body can be obtained by considering a "stokes- 
let" and its image distribution alone. 

In this problem, we define two small non-dimensional parameters el and eh as follows, 
Define 

R =  Max ro(Xl), 
xle[--l,l] 

then 
R R 

e l = ~  1, e h = ~  1 (14) 

where h is the height above the wall. With the constraint that eh ~ 1, we can formally write down 
the integral equations using a centreline distribution as follows, 

i' f' ui(x ) .= G,j(x, s)Fj(s)ds, p(x) = Pj(x, s)Fj(s)ds (15a) 
- l  - l  
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where 

G , j ( x ,  s)  = + r 3 / - + 

ORk \ R 3 + ' e = 1, 2 (15b) 

and 

Pj(x, s) = 4nul[rj~3 R aR, 2h(Si, Ci,k_Sj333k) O(R3/R3)]~Rk (15c) 

where 

r - -  E(N1 - s )  2 -[- X 2 -~-(X 3 - -  h)2] ~ 
and (15d) 

R = [ ( x  I -s)2-q-x22-}-(x3-q-h)2]�89 
with the components of r and R being obvious from this definition. The boundary conditions 
to be applied at the surface of the slender body are, 

u = U o n  r = r 0 ( x , ) .  ( 1 6 )  

We will use two approaches to solving the integral equations (15a, b, c, d) with boundary 
conditions as stated in (16), one being an asymptotic expansion for the force, the other being 
a direct numerical assault on the integral equations using a matrix inversion technique. 

4.1. Asymptotic expansion 

The singular part of the integral equations (15a, b) have been looked at in considerable detail, 
since they represent the motion of a slender body in an infinite fluid, but for thoroughness we 
will repeat the approximations here. Thus we have to solve, or approximate, the following 
integral given the stokeslet distribution is along the centreline of a slender body, that is 

�9 1 t rirj 

where r=( (x  l - s )  2 +x~+x2)  ~ with the components being obvious from this definition. We 
wish to evaluate the integral (17a) on the surface of the slender body, which in the local cylin- 
drical coordinates of the body is (xl, r0(xl), 0). Note the boundary condition to be applied 
on the surface defined in (16) is for the complete integral equation defined in (15a, b, c, d). 
Since (17a) is singular in the limit as ro(xl) tends to zero we can conclude that the major 
contribution from the integral (17a) comes from the vicinity of the point s = x 1. Thus the analysis 
is simplified if we reorganise the integral as follows 

r i rj~ ui(Xl, 0): f j (x l ) f  I Q~--~ ds 
8n~ j ' l  r3 } 

if' + (Fj(s)- Vj(xl) ) ds (17b) 
_ ,  r3/ 

where r = [(x 1 - s) 2 + r 2 (xa ) ]~ .  
In Table 1 the values of the integral, 

after applying the slenderness limits, to functions, such as 

sinh-1 ((xl _ s)/ro) ~ log (2 (x 1 - s)/ro) , 

are listed. 
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TABLE 1 

Approxima~ values ~ on applieatwnofthes~n~rne~ property 

J. R. Blake 

4(l z - x 2) 4(l e - x~) 4(l 2 - x~) 
Approx imate  2 log r~ 2 log r ~  log r ~  

o 

0 sin 20 0 
values - 2 + 1 + cos 20 + 1 - cos 20 

The term in cos 20 and sin 20 can be removed either by taking an average in 0 around the 
slender body, or the same effect can be obtained by using a distribution of potential source 
doublets along the centre-line of the slender body. The important point to note is that these 
terms correspond to higher order approximations of the integral equation and can, to this 
order at any rate, be neglected. The second part of the integral in (17b) is equal to 

I ((~ij_{_~il(~jl) f l  Fj(s)_Fj(xI) dsWE (17d) 
8~z# )_z IS-Xll 

where 

E =I O(e{ l~ F ; i f ~  F'(xl)eC~ 

/O(e~) ~ if F,(xl)eL 2 (17e) 

where C ~ is the space of infinitely differentiable continuous functions and L2 is the space of 
square integrable functions. The stronger error terms follow immediately from the neglected 
term in the asymptotic expansion (see Tuck [-16]). The weaker error term can be derived by 
splitting the integral into three parts, that is by considering two non-singular parts and a region 
around the singular zone. The "slender body equations" quoted in (17c, d) can be obtained from 
Tuck [16] and Batchelor [1]. 

Thus with the rearrangement of the Iij terms by splitting the log term into two parts we obtain 
the following approximation at the surface of the slender body. Since ~h ~ 1 we may leave the 
"wall effect" in the form of an integral. Thus we obtain 

1 I0  2 1 ,  [(1-(Xe/1)2)4-~*,(Fi_i_6ilF1 ) 
ui= 4 ~  og~+ ioglt roo~ ) ] 

+ (~'~o-~- ,~j~) fj 

f I Fj(s)--Fj(x1)ds__Wi[Fj]Ar_E (17  0 
+ (gij+Si,8~x) -~ I s - x l l  

where the wall effect term is defined as follows 

f W,[Fs]  = j Fj(~) + 

-- 2h(Sj, C~,k--CSj363k ) ~ 

This is essentially a "strong expansion" in that the error terms are algebraic. However, these 
equations (17t) prove difficult to solve and Tillett [14], Batchelor [1] and Cox [7] proposed a 
"weak asymptotic" expansion in powers of (log (21/R))- ~ because of the predominant term in 
(17t). We will use their approach in this section and define 

F,(x,)= Z F~"~(~O og ~ . 
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In theory this expansion needs to be completely evaluated before we need to improve the 
"strong expansion" in (17 0. However in practice for finite e~ we need only go to the ruth term 
when (log (2/s~))-" = O (s2). 

On substitution into (17t) (the weak expansion) produces the following as a first approxima- 
tion 

F(t) 2rc#Uj(2&lj_b,16it ) (19a) 

We substitute this back into (170 to obtain the second approximation, that is 

F(2)'A~(a)=--4rc#f U'l~ l ,--(1, (19b) i --vil--1 \ r ~  / q- (�89 Uj + Wil--eJ ] "  

The "wall effect" term may be evaluated analytically, but the algebra is far too lengthy to 
include in this paper. We shall, however, evaluate the second approximation numerically, 
making use of the non-dimensional clearance parameter 3, defined as follows, 

h s t 
(20) 6 t sh 

In the following calculations, we have replaced the singular log term (*) from (19b) with the 
original sinh- 1 function. 

l o g ( ( 1 -  (xt/l)2)@~ * 
\ ro(Xt)/R / --�89189 [1 - x,  + _ 

+ � 8 9 1 8 9  1 + ~ - +  + 1 +  - l o g  R 

The calculations were carried out for both a circular cylinder and a spheroid; the results can be 
seen in the following figures, the force components being non-dimensionalised with respect 
to the first approximation. 

For most of the figures, we have taken s t = 0.02, other values of e~ behave similarly providing 
the restriction e~ ~ 1 is maintained. In Fig, 2, the force distribution per unit length is shown for 
a circular cylinder for different non-dimensional clearance values of 3. There is an increase 

CIRCULAR CYLINDER 
E~: o.oz 

8 =0.1 

m 

2 nd Approxl 

0.5 
0.5 
1.5 
CO 

I I I I I I 

(longitudinal motion) 

2.0 

1"8 t 

, .4 

1.2-  

I.C 0 

I st Approximation / -  
I I i I / ' 1  I t I 

0.2 0.4 0.6 0.8 1.0 

X t 

Figure 2. The second approximation for force distribution along a circular cylinder (e~ = 0.02) for longitudinal motion, 
non-dimensionalised with respect to the first approximation. The distribution is symmetric around the central point  
so only half the distribution is shown. 
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of almost 40 % in the resistance distribution for 6 = 0.1 over that in an infinite fluid (i.e. 6 = oo). 
However, as 6 increases, the force distribution slowly tends to that in an infinite fluid. Because 
we are using a circular cylinder, we have a discontinuity in slope at the ends so the force distribu- 
tion tends to indicate a singular nature at these points. A surface distribution of singularities 
could probably remedy these problems at the ends. 

2.0 J I J I r I l I ' I 
C I R C U L A R  C Y L I N D E R  ( t r a n s v e r s e  m o t i o n )  

E~: 0.02 
1.8 - -  F2 " - -  , F3  . . . .  

8 =o. i  ~ /  

d ~ . . . . . . . . .  0 . I  

i .O  i I J ! ~ I I 
0 0 .2  0 . 4  0 . 6  0 . 8  1.0 

X I 

Figure 3. The second approximation to the force distribution along a circular cylinder (e z = 0.02) for transverse 
motions. 

In Fig. 3, the force distribution for transverse motions are shown. In this case, though, there 
are two cases, movement parallel to the wall (F2) and perpendicular to the wall (F3), The sig- 
nificant result is that the theory predicts the resistance on a slender body moving towards the 
wall (i.e. F3) is around 15 % higher than motion parallel to the wall for 6 =0.1 and 0.3 (also see 
discussion in exact numerical solutions). As we move further away from the wall, the dis- 
crepancy becomes less and eventually become the same when the fluid is effectively infinite. 
We may have anticipated this result qualitatively from the approximate solution for a sphere 
near a wall as the correction factor for the drag for motion parallel to the wall is 9 a / h  and 9a/h 
for motion perpendicular to the wall (a=radius  sphere, h height above wall and a/h~  1). 
Another feature of the graphs is that they are almost constant for small values of 6, except near 
the ends. That is in the middle section the drag on the cylinder is similar to that on an infinite 
cylinder, or alternatively we could say that the interaction effects with the wall is the dominant 
feature of its motion. 

In Fig. 4, we have plotted the ratio of the normal to tangential resistance coefficients for the 
two cases. We define 

F2/U2 F3 / U3 (22) 
71 - F1/U 1 and ?2 = F1/U~---~ " 

We obtain the surprising result that the ratio 7 can be greater than two when we include wall 
effects. In the middle section for 6 = 0.1, we obtain values around 2.3, but near the ends it de- 
creases to values around 2.0. For  a slender body in an infinite fluid, the ratio is always less than 
2, approaching 2 asymptotically in the limit as e t tends to zero. deMestre [8] in his paper 
remarked that this ratio still held even when boundaries are included, but this paper indicates 
otherwise. 

Fig. 5 indicates the variation of total drag as a function of the non-dimensional clearance 6 
for lohgitudinal motion. Plots are made for several values of e~. The graphs indicate that for 
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~'1,2 

2 . 2 - -  

2.0 

1 . 8 -  

1 .6  - 3 :  co  

1.4 . . . . . . .  I 
0 0.2 

' t J 

RESISTANCE RATIO 

CIRCULAR CYLINDER 

I 

%: 0.02 

' I ' I ' 

~=0.I 

(S= 1.5 

~=0.  I 

\ 
N 

8=1.5 

0.4 0.6 0.8 1.0 

x~ 

Figure 4. Ratio of resistance coefficients obtained from Figs. 3 and 4. '2~ ( 

2 . 0  , I ' I ' I 

C~RCULAR CYLINDER (longitudinal motion) 

1.8 

1.4 -' "0.08 2n d 
~ ~ ~  A pproximotion 

1.2Jl O ~  f 

t s~ Approximation / -  

1.0 - . l l i ..I / /  ] J 
I 2 3 

) and 72 ( - - - )  are defined in the text. 

i 

S 
Figure 5. Variation of the second order non-dimensionalised total drag with respect to the clearance 6 of the circular 
cylinder from the wall. Graphs for different values of el are marked on the diagram. 

values of 6 less than one, the drag increases rapidly. This indicates that to minimize wall effects 
on slender bodies, we should be many body lengths (not radii !) away from the nearest boundary. 

Calculations on a slender spheroid yields qualitatively similar features to that for a cylinder, 
except near the ends where we have a smoother profile. 

4.2. Direct numerical evaluation 

In this section, we will briefly discuss a direct numerical approach to solving (15a, b, c, d) for 
the force E boundary conditions (16). Thus, all we have to do is solve the matrix equation 

G" F = U (23~ 
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5.5 

3.0 

2 . 5 -  

F2,5 

4 ~u/,o~ 
2 .0 -  

1.5 

1.0 

0.5 

J. R. Blake 

i I I I i 

_ _  - -  ~=0.1 

EXACT-TRANSMERSE MOTION 

CIRCULAR CYLINDER 
E l =0.02 

I l I 
0.2 0.4 

J I IlIA 

I I --i-- i~--81=~176 1 
0.6 0.8 1.0 

Figure 6. Graphs showing the numerical solutions of the force distribution for a circular cylinder in transverse motion 
(ej = 0.02) for various values of the clearance 5. 

where G is the matrix defined by the kernel or Greens function defined in (15b), F is the un- 
known force distribution and U is the velocity vector. In the numerical work, care needs to be 
taken of the singular parts of the integral (i.e. e~--,0). 

In Fig. 6, the results from the direct numerical calculations are shown for transverse motions 
alone. The important feature to observe is that the numerical results predict a much larger 
resistance for 6=0.1 than does the asymptotic expansion approach (see Fig. 3). For larger 
values of 6 they predict the same results (see e.g. 6 = 1.5). The singular nature at the ends is also 
more apparent when we use the numerical approach. Values of 71,2 in the numerical case 
approaches values around 3 for 6 = 0.1. This indicates that the asymptotic expansion is a poor 
one when 6 becomes small, a more appropriate expansion in cases like this would be, 

~ 2h) - "  (24) Fi(xl) = Fi")(xt) og ~-  , 
n = l  

that is the length scale is replaced by h. 

5. Torque on a rotating slender body: semi-infinite fluid 

The velocity and pressure field due to a distribution of "rotlets" along the centreline of a 
slender body and the corresponding image system due to the presence of a stationary plane 
boundary is as follows, 

u,(x) = f ' G*(x,  )ij(s)ds 
- l  

and (25a) 

i t P *  (x, s) Mj(s) ds 
= - ,  

where 

l_~_ F ~ijkrk 
G* = 8~z# L r a 

•ijk Rk I / t~ik 
R a + 2hekj3 ~ 

3RiRk'] RIRkR3q 
/ -I- 6ekj 3 R5 j (25b) 
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and 

P * -  2~ 8Rk 

where both r and R are defined previously. Here in part II, we have included the factor 1/8~# 
in our expressions for G* and P*. The boundary conditions to be applied at the surface of the 
slender body are, 

U : f f )  AY~ 

o r  

Uo = C O r o ( X , ) ,  u ,  : ux  = 0 (26)  

in local cylindrical coordinates situated within the slender body. 

M 

4 Tr~.b2~ 

3.0 

2.5 

2.0 

1.5 

1.0 

i I ' I i 

TORQUE ON A CIRCULAR CYLINDER 

E~ = 0 .02 

8=0.1 

- A = o o  

J 

O. L [ i I L I I I I 
0 0.2 0.4 0.6 0.8 1.0 

Figure 7. Graphs showing the numerical solutions for the torque on a rotating circular cylinder (e~ = 0.02) for fi = 0.1 
and 6 = ~ which corresponds to the infinite fluid case. 

An extremely accurate approximate for the torque/unit length M 0 was obtained in equation 
(9). If we non-dimensionalise M(xl) with respect to Mo, we can obtain numerically (similar to 
the force) the results which are shown in Figure 7. A surprising result in the variation is only 
1-2 % from the infinite fluid (5 = oo) case for 5 = 0.1. However, on closer investigation of the 
integral equations we see that in an infinite fluid M0 c~e~- 2 while the wall effect is 0 (5- 2) which 
in the case under consideration means the wall effect is two orders of magnitude less or around 
1% as indicated above. That is, because of the rapid decay of the velocity, the wall effect is only 
significant when the slender body is very close to the wall. 

6 .  C o n c l u s i o n s  

The main aim in this paper is to obtain qualitative evidence of the influence of walls on the 
motion of micro-organisms. The wall effect can be increasing significant if the body approaches 
within a body length of the wall (e.g. coverslip or slide) and that motion towards the wall (F3) 
is strongly discouraged. This indicates that it is quite plausible for planar motion to be induced 
in otherwise helical or three-dimensional beating patterns of flagella. 

From the fluid mechanics viewpoint, the two most interesting features are (a) the ratio of 
normal to tangential resistance coefficients can be greater than two and (b) when the clearance 
from the wall is less than the length of the slender body, a much better order approximation to 
the drag is that of O (1/log (2h/R)) where h is the height above the wall. Wall effects are insig- 
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nificant on an axially rotating slender body, within the confines of the above theory (i.e. the 
slender body is not too close to the wall), being about 1-2 ~ off from the infinite fluid case. 
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